COMPITO DI MATEMATICA classe 4 H 10 ottobre 2023

Risolvi i seguenti esercizi nell'ordine che preferisci. Indica chiaramente il riferimento all'esercizio che intendi affrontare. Gli esercizi devono essere svolti con la penna; solo i grafici e i disegni possono essere tracciati con il lapis.

- 1. Dai la definizione di successione crescente; stabilisci se la successione $a_n = \frac{2n-6}{n+3}$ è crescente, motivando in modo esauriente la risposta.
- 2. In una stanza vi sono 6 persone le cui età sono in progressione aritmetica. Sapendo che la più giovane ha 17 anni e che la somma di tutte le età è pari a 162, calcola l'età delle altre persone.
- 3. In una progressione geometrica a_n , con $n \in \mathbb{N}$ si ha $\frac{a_2}{a_0} = \frac{1}{4}$ e $a_2 \cdot a_3 = \frac{7^2}{2^5}$.
 - (a) esprimi la progressione mediante il suo termine generale;
 - (b) calcola la somma dei primi dieci termini della successione
- 4. Considera la seguente successione assegnata per ricorrenza:

$$\begin{cases} a_0 = h \\ a_1 = k \\ a_{n+1} = a_n - a_{n-1} \end{cases}$$

dimostra che si tratta di una successione periodica, di cui si chiede di calcolare il periodo (cioè il minimo numero di passi necessario a ritrovare una sequenza già ottenuta).

5. Sia a_n la successione così definita:

$$\begin{cases} a_0 = 6 \\ a_{n+1} = \frac{1}{2}a_n + 5 \end{cases}$$

- (a) la successione così definita è una progressione aritmetica? è una progressione geometrica?
- (b) sia b_n la successione definita nel modo seguente: $\forall n \in \mathbb{N}, b_n = a_n 10$; dimostra che b_n è una progressione geometrica;
- (c) trova il termine generale di b_n e di a_n .
- 6. E' data la successione definita per ricorrenza:

$$\begin{cases} a_0 = 0 \\ a_1 = 1 \\ a_{n+2} = 3a_{n+1} - 2a_n \end{cases}$$

- (a) calcola i termini a_2 , a_3 , a_4 e a_5 della successione;
- (b) dimostra per induzione che per ogni intero $n\in\mathbb{N}$ $a_n=2^n-1$
- 7. In un riferimento cartesiano ortogonale xOy, è data la retta di equazione $y=\frac{1}{3}x+1$. Costruire il triangolo rettangolo OA_0A_1 avente il vertice A_0 intersezione della retta data con l'asse delle ascisse e il vertice A_1 intersezione della retta data con l'asse delle ordinate. Condurre per A_1 la perpendicolare alla retta data che incontra l'asse delle ascisse in A_2 e condurre per A_2 la perpendicolare ad A_1A_2 che incontra l'asse delle ordinate in A_3 , e così via, ottenendo una spezzata $A_0A_1A_2A_3...A_{n-1}A_n$ i cui vertici di indice dispari appartengono all'asse delle ordinate e quelli di indice pari all'asse delle ascisse.
 - (a) dimostrare che le lunghezze dei lati $l_1=\overline{A_0A_1},\ l_2=\overline{A_1A_2},...,\ l_n=\overline{A_{n-1}A_n}$ della spezzata sono in progressione geometrica e determinarne la ragione;
 - (b) calcolare la lunghezza $S_n = \overline{A_0 A_1} + \overline{A_1 A_2} + + \overline{A_{n-1} A_n}$ della spezzata formata dai primi n segmenti della costruiti mediante la procedura descritta.
- 8. Dimostra per induzione che per ogni intero naturale positivo n vale la relazione:

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \ge \sqrt{n}$$